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Machine Learning

Lecture 10

Lecturer:Haim Permuter Scribe: Omer Luxembourg

I. INTRODUCTION

In this lecture we introduce the f-Divergence definition which generalizes the Kullback-

Leibler Divergence, and the data processing inequality theorem. Parts of this lecture are

guided by the work of T. Cover’s book [1], Y. Polyanskiy’s lecture notes [3] and Z.

Goldfeld’s lecture 6 about f-Divergences [2]. This lecture assumes the student is familiar

with basic probability theory. The notations here are similar to those of the previous

lectures.

II. f-Divergence

Definition 1 (Kullback-Leibler Divergence) Recall the Kullback-Leibler Divergence

(a.k.a. KL-Divergence) definition:

DKL(PX ||QX) , EP

[
log

(
P (x)

Q(x)

)]
. (1)

For discrete probabilities eq. (1) becomes:

DKL(PX ||QX) ,
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
, (2)

and for continuous probabilities:

DKL(PX ||QX) ,
∫
x∈X

P (x) log

(
P (x)

Q(x)

)
dx, (3)

for P,Q such that if Q(x) = 0 then P (x) = 0 for the same x.

There are two main properties for Divergence, which were proved in previous lectures.

a. DKL(PX ||QX) ≥ 0, and equality hold if and only if P = Q.

b. DKL(PX ||QX) is convex in (PX , QX).
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Definition 2 (f-Divergence) For two distributions P and Q, the f-Divergence is defined

as:

Df (PX ||QX) , EQ

[
f

(
P (x)

Q(x)

)]
, (4)

for P,Q, such that if Q(x) = 0 then P (x) = 0 for the same x, and for f that satisfies

the following:

• f is convex for R+.

• f(1) = 0.

The following are special cases of f-Divergences:

a. Kullback-Leibler Divergence: a.k.a. relative entropy, f(x) = x log x ,

Df (PX ||QX) , EQ

[
f

(
P (x)

Q(x)

)]
(5)

(a)
=

∑
x∈X

Q(x) · P (x)

Q(x)
log

(
P (x)

Q(x)

)
=

∑
x∈X

P (x) log

(
P (x)

Q(x)

)
, DKL(PX ||QX),

where (a) follows from the definition of f. Note that f(1) = 0 and f is convex for

all t ≥ 0. (f ′′(t) = 1
t
).

b. Negative Log: f(x) = − log(x),

Df (PX ||QX) , EQ

[
f

(
P (x)

Q(x)

)]
(6)

(a)
=

∑
x∈X

−Q(x) log

(
P (x)

Q(x)

)
, D(QX ||PX),

where (a) is the definition of divergence, which is non-negative, and 0 if P = Q.

Note that f(1) = 0 and f is convex for all t ≥ 0. It is worth noting that, in general,

D(P ||Q) 6= D(Q||P ).

c. Total Variation: f(x) = 1
2
|x− 1| ,

DTV (P,Q) , DfTV
(PX ||QX) (7)
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= EQ

[
fTV

(
P (x)

Q(x)

)]
=

∑
x∈X

Q(x) · 1
2

∣∣∣∣P (x)

Q(x)
− 1

∣∣∣∣
=

1

2

∑
x

|P (x)−Q(x)| .

Note that f(1) = 0 and f is convex for all t ≥ 0. In addition DTV (P,Q) =

DTV (Q,P ) means that the total variation is a metric on the space of probability

distributions. That is because it is a divergence function and a symmetric function

of P and Q .

d. Jensen-Shannon divergence (symmetrized KL): f(x) = x log 2x
x+1

+ log 2
x+1

,

DJS(P ||Q) , DfJS
(PX ||QX) (8)

= EQ

[
f

(
P (x)

Q(x)

)]

=
∑
x∈X

Q(x)

(
P (x)

Q(x)
log

2P (x)
Q(x)

P (x)
Q(x)

+ 1
+ log

2
P (x)
Q(x)

+ 1

)

=
∑
x∈X

P (x) log

(
P (x)

P (x)+Q(x)
2

)
+Q(x) log

(
P (x)

P (x)+Q(x)
2

)
(a)
= D

(
P ||P +Q

2

)
+D

(
Q||P +Q

2

)
,

where (a) is the definition of divergence.

f(1) = 0 and f is a convex function. (f ′′(x) = 1
x2+x

≥ 0 for all x > 0).

Theorem 1 (Properties of f-Divergence).

• Non-negativity: For a f function that is strictly convex around 1, Df (P ||Q) ≥ 0.

The equality holds if and only if P = Q.

Proof:

Df (P ||Q) = EQ

[
f

(
P

Q

)]
(9)

(a)

≥ f

(
EQ

[
P (x)

Q(x)

])
(b)
= f(1)
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(c)
= 0,

where (a) is from Jensen’s inequality for a convex function f, (b) is due to the fact

that P (x)
Q(x)

is fixed ∀x because P = Q, (c) is from the definition of f. Note that if f

is not strictly convex around 1, the equality can hold from Jensen’s inequality and

not from P = Q.

• Joint convexity: (P,Q) 7−→ Df (P ||Q) is a jointly convex function. Consequently,

P 7−→ Df (P ||Q) for fixed Q and Q 7−→ Df (P ||Q) are also convex functions.

Proof: From the Perspective Transform Preserve Convexity lemma we learned that

if f(x) is convex ⇒ t · f
(
x
t

)
is convex in (x, t).

Df (P ||Q) =
∑
x

Q(x)f

(
P (x)

Q(x)

)
, (10)

f is a convex function; thus, from the Perspective Transform Preserve Convexity

Lemma, Q(x) · f
(

P (x)
Q(x)

)
is convex in (x, t). Therefore Df (P ||Q) is the sum of

convex functions in (P,Q) by eq. (10); thus it is a convex function in (P,Q).

Theorem 2 Conditioning Increases f-Divergence: Define the conditional f-Divergence

Df (PY |X ||QY |X |PX) , EPX,Y

[
Df

(
PY |X ||QY |X

)]
. (11)

Let PY be the output of the system PY |X for input PX , and QY be the output of the

system QY |X for input PX , see figure 1.

PY |X PY

PX

QY |X QY

Fig. 1. Channel transition matrices
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Then

Df (PY ||QY ) ≤ Df

(
PY |X ||QY |X |PX

)
. (12)

One can view PY and QY as the output distributions after passing PX through the channel

transition matrices PY |X and QY |X , respectively. The above relation tells us that the

average f-Divergence between the corresponding channel transition rows is at least the

f-Divergence between the output distributions.

Proof:

Df (PY |X ||QY |X |PX) ,
∑
x

PX

∑
y

Q(Y |X)f

(
P (Y |X)

Q(Y |X)

)
(13)

(a)
=

∑
x

PXDf (P (Y |X = x)||Q(Y |X = x))

(b)

≥ Df

((∑
x

PXP (Y |X = x)

)
||

(∑
x

PXQ(Y |X = x)

))
(c)
= Df (EPX

[P (Y |X)] ||EPX
[Q(Y |X)])

(d)
= Df (P (Y )||Q(Y )) ,

where (a) follows from the definition of f-Divergence, (b) follows from Jensen’s

inequality, because Df is convex in P,Q, (c) is the definition of expectation, and (d)

follows from the Law of Total Expectation.

Remark 1 (equality for Df (PY |X ||QY |X |PX)): We can notice the following equality

holds:

Df (PY,X ||Q̃Y,X) , EQ̃Y,X

[
f
PY,X

Q̃Y,X

]
(14)

=
∑
y,x

Q̃(y, x)f

(
P (y, x)

Q̃(y, x)

)

=
∑
x

P (x)
∑
y

Q(y|x)f
(
P (y, x)

Q(y, x)

)
(a)
=

∑
x

P (x)
∑
y

Q(y|x)f
(
P (y|x)P (x)

Q(y|x)P (x)

)
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(b)
=

∑
x

P (x)
∑
y

Q(y|x)f
(
P (y|x)
Q(y|x)

)
= Df (PY |X ||QY |X |PX),

where (a) follows from the definition of conditional probability, and Q̃(y, x) ,

P (x)Q(y|x), and (b) is from the definition of divergence.

III. DATA PROCESSING INEQUALITY

The data processing inequality for KL divergence extends to all f -Divergences.

P (x) P (y)

W (y|x)

Q(x) Q(y)

Fig. 2. One channel transition [3]

The intuition behind the following inequality is that processing the observation x by a

channel WY |X makes it more difficult to determine whether it came from PX or QX . In

neural networks, for instance, the divergence of the system output will decrease as we

move to the next layer.

Theorem 3 (Data Processing Inequality): Consider a channel that produces Y given

X based on the law WY |X . If PY and QY are distributions of Y when X is generated

by PX and QX , respectively, then for any f-Divergence,

Df (PX ||QX) ≥ Df (PY ||QY ), (15)

as for the KL divergence.

Proof:

Df (PX ||QX) , Df (PXWY |X ||QXWY |X) (16)

=
∑
y,x

Q(x, y)f

(
P (x, y)

Q(x, y)

)
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(a)
=

∑
y

Q(y)
∑
x

Q(x|y)f
(
P (x, y)

Q(x, y)

)
(b)

≥
∑
y

Q(y)f

(∑
x

Q(x|y)P (x, y)

Q(x, y)

)

=
∑
y

Q(y)f

(∑
x

Q(x|y) P (x, y)

Q(y)Q(x|y)

)
(c)
=

∑
y

Q(y)f

(
P (y)

Q(y)

)
= Df (PY ||QY ),

where (a) follows from conditioning, (b) is Jensen’s inequality for convex f in P,Q, and

(c) is from Law of Total Probability. Note that PX,Y = PXWY |X and QX,Y = QXWY |X .
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